13,368 research outputs found

    Shape sensing of miniature snake-like robots using optical fibers

    Get PDF
    Snake like continuum robots are increasingly used for minimally invasive surgery. Most robotic devices of this sort that have been reported to date are controlled in an open loop manner. Using shape sensing to provide closed loop feedback would allow for more accurate control of the robot's position and, hence, more precise surgery. Fiber Bragg Gratings, magnetic sensors and optical reflectance sensors have all been reported for this purpose but are often limited by their cost, size, stiffness or complexity of fabrication. To address this issue, we designed, manufactured and tested a prototype two-link robot with a built-in fiber-optic shape sensor that can deliver and control the position of a CO 2 -laser fiber for soft tissue ablation. The shape sensing is based on optical reflectance, and the device (which has a 4 mm outer diameter) is fabricated using 3D printing. Here we present proof-of-concept results demonstrating successful shape sensing - i.e. measurement of the angular displacement of the upper link of the robot relative to the lower link - in real time with a mean measurement error of only 0.7°

    In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany

    Get PDF
    We present 2.5 years (from June 2006 to December 2008) of in-situ measurements of CO2, O2, CH4, CO, N2O and SF6 mixing ratios sampled from 23, 90 and 163m above ground on the Ochsenkopf tower in the Fichtelgebirge range, Germany (50?0104900 N, 11?4803000 E, 1022ma.s.l.). In addition to the in-situ measurements, flask samples are taken at Ochsenkopf at approximately weekly intervals and are subsequently analysed for the mixing ratios of the same species, as well as H2, and the stable isotopes, ?13C, ?18O in CO2. The in-situ measurements of CO2 and O2 from 23m show substantial diurnal variations that are modulated by biospheric fluxes, combustion of fossil fuels, and by diurnal changes in the planetary boundary layer height. Measurements from 163m exhibit only very weak diurnal variability, as this height (1185ma.s.l.) is generally above the nocturnal boundary layer. CH4, CO, N2O and SF6 show little diurnal variation even at 23m owing to the absence of any significant diurnal change in the fluxes and the absence of any strong local sources or sinks. From the in-situ record, the seasonal cycles of the gas species have been characterized and the multi-annual trends determined. Because the record is short, the calculation of the trend is sensitive to inter-annual variations in the amplitudes of the seasonal cycles. However, for CH4 a significant change in the growth-rate was detected for 2006.5–2008.5 as compared with the global mean from 1999 to 2006 and is consistent with other recent observations of a renewed increasing global growth rate in CH4 since the beginning of 2007

    Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models

    Get PDF
    Hydrological model-related uncertainty is often ignored within climate change hydrological impact assessments. A MIKE SHE model is developed for the Mekong using the same data as an earlier semi-distributed, conceptual model (SLURP). The model is calibrated and validated using discharge at 12 gauging stations. Two sets of climate change scenarios are investigated. The first is based on a 2 °C increase in global mean temperature (the hypothesised threshold of ‘dangerous’ climate change), as simulated by seven GCMs. There are considerable differences in scenario discharge between GCMs, ranging from catchment-wide increases in mean discharge (up to 12.7%; CCCMA CGCM31, NCAR CCSM30), decreases (up to 21.6% in the upper catchments; CSIRO Mk30, IPSL CM4), and spatially varying responses (UKMO HadCM3 and HadGEM1, MPI ECHAM5). Inter-GCM differences are largely driven by differences in precipitation. The second scenario set (HadCM3, increases in global mean temperature of 1–6 °C) shows consistently greater discharge (maximum: 28.7%) in the upper catchment as global temperature increases, primarily due to increasing precipitation. Further downstream, discharge is strongly influenced by increasing PET, which outweighs impacts of elevated upstream precipitation and causes consistent discharge reductions for higher temperatures (maximum: −5.3% for the main Mekong). MIKE SHE results for all scenarios are compared with those from the SLURP catchment model and the Mac-PDM.09 global hydrological model. Although hydrological model-related uncertainty is evident, its magnitude is smaller than that associated with choice of GCM. In most cases, the three hydrological models simulate the same direction of change in mean discharge. Mac-PDM.09 simulates the largest discharge increases when they occur, which is responsible for some differences in direction of change at downstream gauging stations for some scenarios, especially HadCM3. Inter-hydrological model differences are likely attributed to alternative model structures, process representations and PET methods (Linacre for MIKE SHE and SLURP, Penman–Monteith for Mac-PDM.09)

    Progressive multiple sclerosis: Prospects for disease therapy, repair, and restoration of function

    Get PDF
    Multiple sclerosis is a major cause of neurological disability, which accrues predominantly during progressive forms of the disease. Although development of multifocal inflammatory lesions is the underlying pathological process in relapsing-remitting multiple sclerosis, the gradual accumulation of disability that characterises progressive multiple sclerosis seems to result more from diffuse immune mechanisms and neurodegeneration. As a result, the 14 anti-inflammatory drugs that have regulatory approval for treatment of relapsing-remitting multiple sclerosis have little or no efficacy in progressive multiple sclerosis without inflammatory lesion activity. Effective therapies for progressive multiple sclerosis that prevent worsening, reverse damage, and restore function are a major unmet need. In this Series paper we summarise the current status of therapy for progressive multiple sclerosis and outline prospects for the future

    Modelling & characterization of a compliant tethered microgripper for microsurgical applications

    Get PDF
    The development of microscale surgical tools could pave the way for truly minimally invasive microsurgical procedures. This work demonstrates the application of direct laser writing (DLW) using two-photon polymerization (TPP), a rapid prototyping microfabrication technique, to create a tethered, passively actuated three-dimensional gripper with potential applications in microbiopsy. A microgripper design was devised, modelled and optimized. The gripper was then fabricated and characterized for validation of the theoretical model. The results demonstrate that modelling the behavior of compliant microtools provides a useful approximation for the observed trends and, thus, can be utilized in the design of TPP tools. Future work on the incorporation of viscoelastic material into the model will further improve agreement between the predicted and experimental performance

    MSJ 2020 - Editorial comment

    Get PDF

    Challenge of progressive multiple sclerosis therapy

    Get PDF
    PURPOSE OF REVIEW: Understanding the mechanisms underlying progression in multiple sclerosis (MS) and identifying appropriate therapeutic targets is a key challenge facing the MS community. This challenge has been championed internationally by organizations such as the Progressive MS Alliance, which has raised the profile of progressive MS and identified the key obstacles to treatment. This review will outline the considerable progress against these challenges. RECENT FINDINGS: New insights into mechanisms underlying progression have opened up potential therapeutic opportunities. This has been complemented by ongoing validation of clinical and imaging outcomes for Phase II trials of progression, coupled with the development of innovative trial designs. The field has been greatly encouraged by recent positive Phase III trials in both primary and secondary progressive MS, albeit with modest benefit. Early trials of neuroprotection and repair have provided important new data with which to drive the field. Improving symptom management and advancing rehabilitation approaches, critical for this patient population which, taken together with identifying and managing comorbidities and risk factors, has an appreciable impact on health-related quality of life. SUMMARY: Raising the profile of progressive MS has resulted in the first effective treatments with the promise of more to come
    • …
    corecore